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Summary 

 

This paper presents a method to generate a >70% accurate predictive map of sweet spots in shale plays prior to drilling. 

It indicates where to drill, and where not. The approach uses DNA analysis of surface soil samples, to derive 

information on the mix of microbial species in the samples. Using our database to correlate DNA in soil samples and 

production data of earlier drilled areas, the new DNA fingerprint is an indicator of the presence of vertical micro-

seepage to the surface from hydrocarbon accumulations in the subsurface - including sweet spots in shale plays. In 

times of low oil and gas prices, stepping away from grid drilling and implementing an iterative procedure of prioritized 

development of higher profitable areas of a play, could prove a game changing strategy. 

 

First technological break-through: DNA ‘fingerprinting’, biotechnology  

The occurrence of vertical upward micro-seepage has been known for decades and is extensively described in the 

literature. But the microbial life is much more complicated than the few species that were known as hydrocarbon-

oxidizing bacteria. It is necessary to determine the complex composition of microbes -not only those that flourish at 

micro-seepage sites, but also those that are eliminated under such conditions and are therefore found in reduced 

concentrations above sweet spots. Recent developments in DNA analysis techniques have made this complex and 

previously expensive problem efficiently and economically solvable.  

 

Second technological break-through: Big Data, Machine Learning, super computing 

The millions of microbes counted in thousands of soil samples by applying 16SrDNA ‘fingerprinting’ techniques 

create terabytes of data that must be correlated with the presence of hydrocarbons. This is a huge mathematical and 

computational big data problem. Advancements in machine learning applications together with parallel computing 

(Hadoop in the cloud, GPU) have made it possible to construct robust and reliable predictive DNA based models for 

sweet spot locations. 

 

The combination of both technologies will be illustrated with two case studies: 1) a validation case in the Haynesville 

shale, an area with known production data, and 2) two areas in The Netherlands where the prospectivity of two shale 

formations was estimated. 

 

 

Introduction 

 

The patented technology produces a >70% accurate predictive map of the highest producing areas in a shale play, so 

called sweet spots, using DNA analysis of surface soil samples. The DNA analysis contains information on the mix 

of microbial species in the soil samples which is a direct indicator for the presence of vertical micro-seepage (red 

arrows in Figure 1) from hydrocarbon accumulations in the subsurface. This paper describes this technology and its 

validation in detail.  For exploration, its paves the way to highly effective exploration drilling and investment decision-

making. For production, it leads to significant cost reduction by optimizing drilling scenarios and increased 
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development speed of a play. The accuracy of the predictive map is iteratively increased from about 70% before 

drilling to up to 85% by incorporating information from the drilled wells with local, field specific microbial 

information.  

 

Figure 1: Micro-seepage by buoyancy of colloids from subsurface hydrocarbon accumulations moving vertically upward through micro cracks 

towards the surface. 

 

The presence of vertical upward micro-seepage is extensively described in the literature. The upward migration of 

colloids (a few molecules clustered together) of light gaseous hydrocarbons (C1-C5) from subsurface petroleum 

accumulations, and the use of specific micro-organisms as indicators for this process, was already described by 

German pioneers in this field (Laubmeyer, 1933) as well as by scientists in the USSR (Horvitz, 1939). Bacteria are 

present in high numbers and variation of species in soil samples. Their exceptionally high adaptivity to grow on small 

amounts of nutrient sources form the micro-seepage, produce a very valuable ‘soft sensing mechanism’. Some bacteria 

oxidize the carbon molecules and use the micro-seepage as a carbon source for their metabolic activities and growth. 

The use of this principle for exploration, was already described within the USSR (Mogilevskii) in 1940 to 1959.  After 

these publications, scientists in the US documented a correlation between higher hydrocarbon concentrations 

originating from oil and gas fields and hydrocarbon-oxidizing bacteria measured in surface soil samples (Davis, 1956, 

Sealy, 1974, Miller, 1976). The metabolism of hydrocarbon oxidizing bacteria is the cause of the development of near 

surface oxidation- and reduction-zones and the alteration of soils and sediments above the reservoir. Differences in 

indirect measurements indicating the activity of oxidizing bacteria form the basis of geochemical exploration 

techniques developed during the 90s such as radioactivity, carbonate, pyrite, magnetic, electrical, and satellite-based 

methods (Schumacher, 1996, Wagner, 2002, Schumacher, 2012, Rasheed et al., 2013). It was shown that clear and 

sharp anomalies of -geochemical- properties could be indicated very precisely at the border of reservoirs due to vertical 

upward migration of micro-seepage. In the same period the transport mechanism was also investigated (Klusman and 

Saeed, 1996, Saunders et al, 1999). The commonly accepted conclusion is that micro-seepage is caused by buoyancy 

of very small colloids of molecules (nanoscale) through micro-cracks (microscale) that are present even in 

‘impermeable material’ (Figure 2a). Micro-seepage yields sharp anomalies right above hydrocarbon accumulations 

because of the distribution of a colloid going randomly left or right through a micro-crack is tightly clustered when 

this process is repeated many times (Figure 2b). Field observations show that these surface anomalies, within a few 

years after production has been stopped, disappear. This fits the explanation in Klusman and Saeed (1996) that micro-

seepage is caused by vertical buoyancy, driven by the difference in gas and water pressure, resulting in a significantly 

faster process than convection-diffusion as long as the pressure difference is large enough. This also means that 

distinguishing different vertical payzones above another must come from other geo-knowledge/monitoring. 
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Figure 2: a) micro cracks are present in ‘impermeable’ layers                                                   b) peak distribution of a ‘stochastic tree’ 

 

Despite the long history of research and publications, problems were encountered with the acceptance of microbial 

exploration techniques. Microbial life is much more complicated than the few species that are known as hydrocarbon 

oxidizing bacteria. Furthermore, these bacteria were costly to quantify because a different agar plate culture had to be 

used for every species. It was even much less accurate when measured indirectly by geochemical methods. 

Additionally, acceptance was influenced by a competing and superior technology, seismology, developing very 

rapidly in the same period.  

 

The development of recent DNA analysis techniques makes the microbial quantification of species comprehensive 

and economically feasible. The millions of counted species in thousands of soil samples by applying 16SrDNA 

techniques creates an enormous amount of input data (terabytes in size) that must be correlated with the presence of 

hydrocarbons. This is a serious big-data mathematical and computational challenge. The progress made in 

supercomputing makes it possible to construct robust and reliable predictive models by applying machine learning 

techniques derived from pharmaceutical applications. The strict experimental design rules in this field are used to find 

a complex composition of microbes, not only those who flourish by the micro-seepage, but also those who are 

terminated by it and that have therefore lower concentrations above sweet spots. The latter category could never be 

found by the earlier adopted microbial exploration techniques, however have proven to be essential for identification 

of sweet spots. 

 

Our primary focus for the application of this technology therefore is to identify sweet spots in shale plays where 

seismic data is insufficiently indicative or too expensive, an area where a robust, economic, and accurate technology 

is not yet available. It is shown that microbes, sensing vertical micro-seepage, identify sweet spots and low productive 

areas consistently and adequately. 

 

This article consists of three parts: The first part describes the methodology of the workflow; the second part covers 

validation cases in the Haynesville shale and a pre-drilling case in shale formations in the Netherlands. Third and last, 

conclusions together with remaining uncertainties are summarized. 

 

 

Methodology 

 

To generate an accurate and predictive map with sweet spots highlighting the most prospective areas, the following 

steps are followed:  

 

1. Soil sampling in the field, followed by DNA analysis to get DNA-fingerprints of the microbes. 

2. Selecting a training set from our database with sample data from earlier drilled and known areas. The 

training set has similar DNA fingerprints compared to the new samples and can correlate DNA from soil 

samples with production data. 

3. Modelling and validating the microbes that determine the sweet spots.  

4. Mapping and analyzing the prospectivity / sweet spots / low production areas of the target play. 
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1. DNA analysis to get DNA-fingerprints  

DNA based methodologies are broadly applied in life sciences. The methodology described here is derived from the 

workflow to determine a DNA fingerprint in life sciences applications (extraction, multiplication with PCR, and 

sequencing of DNA), modified for this specific Oil & Gas soil application. The methodology is based on identification 

of bacteria, present in soil samples, based on their 16S ribosomal DNA sequence (hereafter 16S sequence). The 16S 

sequence of bacteria is generally used as a genetic fingerprint of bacteria and consists of conserved and variable 

regions. The sequence of one such variable region is determined by Illumina sequencing. Similarities and differences 

in the 16S sequence are translated to bacteria. In Figure 3 a schematic representation of the steps required for the 

DNA-based analysis of soil samples is shown.  
 

 

Figure 3: Workflow for getting DNA fingerprints for soil samples: 1) Soil samples preparation for DNA analysis, 2) Extraction of bacterial DNA 
from soil sample, 3) Amplification of the 16S rDNA by Polymerase Chain Reaction, 4) 16S Sequence analysis using next generation Illumina 

MiSeq, 5) Processing raw data from MiSeq to verified 16S sequences, 6) Processing verified 16S sequences back to individual soil samples and 7) 

Interpretation of 16S sequence data: translation to bacterial genera (families); the steps 2 and 3 are tuned by BIODENTIFY to get maximum 
information on species. 

 

Analyzing the composition of the microbial population present in the soil samples requires extraction of microbial 

chromosomal DNA from the samples. This is performed by mechanical disruption of the bacteria using small beads 

and vigorous shaking. To handle the large number of samples in this study, extraction of chromosomal DNA from 

the micro-organisms present in the soil samples was performed in 96-well deepwell plates (Figure 4). 

 

 

Figure 4: Example of 96-wells plate filled with soil samples, ready for 

extraction. Samples from different locations sometimes differ in their 

appearances as is clear from the differing coloration in the wells of 
this plate. 

Figure 5: Example of sample-to-sample differences in impurities after DNA 

extraction. 

 

A specialized, proprietary DNA extraction method was developed that yields maximal successfully amplified samples 

but also can be automated to prevent extreme costs because of a growing number of samples. It is based on bacterial 
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cell lysis by bead-beating using zirconium beads, removal of inhibiting compounds using proprietary solutions 

provided by adapting commercial available kits, binding and washing of the DNA and finally elution of the pure DNA. 

 

After amplification and sequencing the processing is finalized in a series of special designed quality control steps 

which together are called the 'pipeline' (Figure 6). Initially, the number of DNA segments equals the number of unique 

sequences (>35 million sequences). During the processing, the total number of sequences (blue bars) slowly decreases 

to ~29 million sequences. However, the number of unique sequences (crimson bars) diminishes, finally resulting in a 

fraction (~340 thousand) of the initial number of sequences. These unique sequences form the basis for the 

identification of biomarkers as they are translated from sequences to families or genera. Figure 7 shows a 

representation of the relative abundance of bacterial families or genera within 7 different samples. 

 

 

Figure 6: Schematic representation of the effect of the various 

proprietary filtering steps within the 'pipeline'. Please note, at this 
scale, the number of unique sequences at the final stage is hardly 

visible (value ~340 thousand). 

Figure 7: Schematic representation of the bacterial diversity and relative 

abundance within samples. Each colored bar represents a bacterial genus or 
family. Please note that the legend on the right only shows a minor fraction 

of all bacterial diversity. 

 

 

2. Using our database with samples from drilled and known plays, to correlate DNA in soil samples with production 

data 

When predicting the productivity of undrilled, target locations where only DNA fingerprints of shallow soil samples 

is available, it is necessary to have a correlation model that connects the new fingerprints of the new target location 

with a prospectivity index. This correlation model is produced by using our database, containing DNA fingerprints 

and production data from executed projects. Currently (May 2017), we have well over 2000 samples with known 

production data from six different and varying shale plays in our database (Figure 8): 

1. The Haynesville Shale: in 2013 the highest shale gas producer. Situated in hot and moist climate (bayous).  

2. The Bakken Shale: in 2013 the highest shale oil producer. Situated in a land climate with limited vegetation 

(prairies).  

3. The Antrim Shale: one of the oldest shale gas producers and also a -proven- biogenic shale play, situated in 

forested areas. 

4. Avalon and Bone Spring: Situated in a desert environment. 

5. Lewis Shale: Best producer in the Rocky Mountain province. 

6. Big Sandy: Good gas producer in the North East. 
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Figure 8: Map of the sampled shale gas and shale oil plays 

 

Each sample contains up to hundreds of thousands counted different species. The correlation of each of these samples 

(a vector x) to the newly sampled DNA fingerprints is a measure for the similarity of the DNA fingerprints in the 

database with the new one. This correlation, or more precisely a “co-occurrence measure”, is estimated by 

unsupervised k-nearest neighbor techniques (kNN) addressing the high dimensionality of the problem. The co-

occurrence is expressed by the cosine similarity. By selecting the samples from the database that have the highest 

correlation with the DNA fingerprints of the new samples, a training set is generated, where fingerprints and 

productivity are known. This training set is used to find the correlation model with Machine Learning algorithms to 

predict the prospectivity at new locations (see next step 3 described in detail below). Because the database has samples 

from different and varying plays (hydrocarbon source, climate, geology), creation of a training set with a sufficiently 

strong correlation between samples from drilled areas and new locations can be realized.  

 

3. Modelling and validating the microbes that determine the sweet spots 

The next step is to correlate the results of the sequenced analysis (the bacterial diversity in the DNA-fingerprints of 

all soil samples) with production data in the selected training set. The goal is to find correlations between production 

and presence or absence of specific bacteria, typically about 50-200 out of the 340,000 species in our database, the 

so-called biomarkers. A biomarker that is oxidizing the colloids of gas that are transported by micro-seepage is more 

abundant above sweet spots. But the difference in abundance is not distinctive, it is therefore not an absolute indicator. 

In fact, one biomarker will result in a map with a lot of noise (compare Figure 9a and 9b). The model must 'find the 

signal in the noise'. Only when many biomarkers (> 50) are used together, a sufficiently accurate estimate can be made 

and the location of sweet spots become visible in the map (Figure 9c). 

 

 

Figure 9: a) area with a sweet spot (in green)          b) modelled sweet spots using 1 biomarker              c) modelled sweet spots using 70 biomarkers 

 

To build a model that consists of the 50-200 differentiating biomarkers is a real Big Data challenge. It aims to find 

both those species that are more present above sweet spots because they use the seeped colloids of hydrocarbons for 

their metabolism, and those species, that are less present above sweet spots because the population is partially 

eliminated by the hydrocarbons. The number of possible solutions is a power law of the hundreds of thousands of 

possible species, resulting in an almost infinite solution space. A special Machine Learning algorithm has been 
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developed to perform this task. State of the art methods were used to deal with 'sparse modelling' issues like non-

linearity, the influence of noise and to prevent overfitting (Gaussian kernels for non-linear problems (Cortes, 2012) 

and L1-based regularization methods (Mosci, 2011)).  

 

To find the most robust and reliable predictive biomarkers, we adapted the above described algorithms in a triple-loop 

validation/prediction procedure (developed for medical applications by TNO; Figure 10). To ensure that the model 

correctly captures the information contained in the dataset, samples are randomly shuffled, based on the input data 

matrix of microbial abundances. Next, the reshuffled matrix is split into a calibration subset (randomly 70% of the 

training set) and a validation subset (30% of the training set). The calibration set then is subjected to N-cross folds to 

estimate the modelling parameters N-times. The final selected parameter set minimizes the average misfit in the 

predictions (inner loop in Figure 9). These parameters are used on the separately reserved validation set to confirm 

the validity of the model and the identified biomarkers. Since variations inevitably occur within this type of 

computational modelling, 1000 repetitions are run, thus selecting only the most stable biomarkers over all 1000 x N 

simulations (second loop in Figure 10). The model is aimed at reducing the number of biomarkers until an optimum 

in prediction accuracy is achieved where the prediction is at its optimum and the number of biomarkers is at its 

minimum (expressed in a ROC curve; Figure 11). Only then a prediction can be made for a new area, and a model can 

be improved with new measurements (outer loop in Figure 9). The ‘price’ for calculating a robust predictive model is 

the compute time needed for calibrating 1000 x N models (to achieve the best final prediction). This is solved 

economically by computing in the cloud using Hadoop technology (32,000 processors) and using GPU clusters in-

house to accelerate the highly parallelizable calculations. 

 

 

Figure 10: Schematic representation of the machine learning 'triple loop'  

modelling procedure.  

Figure 11: Representation of the performance of a binary classifier system 

(prospective vs. non-prospective). The fraction of true positives out of the total 

positives (TPR – true positive rate) is plotted versus the fraction of false 
positives out of the total negatives (FPR = false positive rate) for all weighted 

biomarkers. The 'ROC curve' indicates the area under the curve, indicating that 

the reliability of the predicted biomarkers is 85%. 

 

 

4. Mapping and analyzing the prospectivity / sweet spots / low production areas of the target play  

With 1000 models ‘trained’ (every time on another random 70% subset and validated on 30% of the samples that are 

left out from the training set) we can predict a value that indicates whether this location will be a sweet spot or not for 

each new location with a DNA fingerprint (dimensionless value range out of a Machine Learning classification 

algorithm: between -1 and 1). These values, on the sampled locations, are then contoured onto a map, showing the 

estimated sweet spots in the target area. 

 

The use of DNA analysis and the modelling to produce the sweet spots map, is summarized by the workflow in 

Figure 12: 

a) Take shallow soil samples 
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b) In a grid over an area where the grid distance depends on the expected size of the sweet spot (grid spacing 

typically in the range of 0.5-1 mile to increase the change a sweet spot is sampled multiple times) 

c) Analyze every soil sample in the grid on DNA fingerprints 

d) Estimate productivity with a predictive model (generated using a training set from our database), using the 

DNA fingerprints of soil samples as model input, then draw contour estimates to a map 

 

Figure 12: Steps to produce a sweet spot map 
 

 

Cases 
 

Validation case in Haynesville. In accordance with the workflow described above, the technology is illustrated with 

an example of a 15x15 miles area in the Haynesville: 

1. A grid with 362 locations were sampled, 20-50 cm below surface elevation (Figure 13c on the right). The 

productivity map (Figure 13b in the middle), from actual well production data, is used to validate the generated 

model. 

 

 

Figure 13: a) pilot Haynessville shale      b) drilled wells and contoured production (2 years)   c) locations of soil samples 

                                                                      orange = top 10% of producers in this play                                                       

2. Generate a model with the triple loop modelling procedure applying selected sample data from the database that 

show sufficient similarity with the local DNA fingerprints from the target area. 

3. Predict the chance of a sweet spot at grid sample point location by using the model from the training set and the 

local DNA-fingerprint data only, and generate a first sweet spot prediction map by interpolation of the predictions. 

In this case, successful DNA analyses were generated at 314 locations. For those locations, the predictions are 

shown as colored points on the map which are subsequently contoured (Figure 14). Since this area is used as a 

validation case, the actual drilled wells with production rates are known (background map of Figure 14) and these 
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are used to benchmark the DNA based predictions. As mentioned above, the model is trained with data from our 

database from other shale areas, and the model productivity predictions are made solely by using local soil sample 

DNA fingerprints (bright colored contours at foreground of Figure 14). The map in Figure 13 provides the 

predicted sweet spot map before drilling, with 72% accuracy. The highly productive area in the North East is 

clearly predicted, but there are also some 'probably false sweet spots' (sweet spots predicted by our model but not 

seen in the validation / productivity map) in the South East. 

 

Figure 14: Prediction map of sweet spots without using local production data (can be seen as predicted map before drilling). 

 

4. Wells will be drilled targeting the predicted sweet spots. When drilled, production information from these wells 

will be used to increase prediction accuracy by adding these locations with known data to the training set, then 

re-model. This is how we generated our final map, using ‘new’ and local field information from the validation 

data. Applying this principle, a new map with increased accuracy, now 86% (Figure 15) was produced. The 

mismatches on individual isolated locations reflect the ‘noise in the data’, always present in nature, but as there 

is no correlation between these points, it will not impact the decision-making based on this predictive map.  

In reality, 97 wells were drilled in this area, with 27 high producers (table with Figure 15). These numbers 

showcase the value of the methodology: through smart and prioritized drilling, based on updated predictive maps, 

more hydrocarbons can be produced even while drilling significantly fewer wells. 

 

 

actual 

drilled wells

with DNA 

information

low producing 70 15

high producing 27 31

total 97 46
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Figure 15: Final estimated sweet spot map after 'virtually drilling' wells and therefore iteratively increasing the prediction accuracy. By using the 

DNA fingerprints the area is (virtually) produced with significantly fewer wells yet with a higher absolute number of wells in sweet spots 

 

Undrilled pilots in the Netherlands. The second case is carried out prior to drilling. In the Netherlands two pilot areas 

were sampled and analyzed on DNA fingerprints to produce predictive maps. As a training set, again data from the 

US database is used, with sufficient, validated similarity in microbial DNA. The maps, from two different formations 

(Geverik and Posidonia) are showing a significant difference (Figure 16): in the Geverik no shale gas is predicted 

while in the Posidonia there is a clear indication of sweet spots. Both maps are generated using the same trained model 

from our database. The absence of shale gas in the Geverik map confirms the existing theory that the circumstances 

for the formation of shale gas were unfavorable because it is on top of Visean carbonate structures (Harings, 2012). 

Naturally, the outcome can only be verified after drilling, but the plausibility of the maps is further demonstrated 

because the DNA fingerprints in the Geverik area were positive in the small zone above a conventional prospect 

(prospect mapped based on seismic data and geological interpretations), whereas the known and produced (now 

‘empty’) fields in the Posidonia area were not captured. These findings again support the earlier explained concept of 

micro-seepage with a relatively high velocity of buoyancy where the signal in the DNA fingerprint disappears within 

a few years after production because of a decrease in  reservoir pressure.  

 

Figure 16: Predicted sweet spot maps of two areas in the Netherlands: one of the Geverik and one over the Posidonia formation. 

 

 

Discussion and outlook 

 

We propose that sweet spot prediction, with an accuracy of 70% prior to drilling, by using DNA fingerprints from 

shallow soil samples is a valid additional exploration tool. Our case studies show reproducible results supporting this. 

The presence of vertical micro-seepage by buoyancy through microcracks is a difficult process to prove because it 

cannot be measured directly (as opposed to macro-seepage). Although many geochemical anomalies have been 

detected for conventional fields and distinctive differences in biomarkers above sweet spots in shale are found as 

described in this article, proof of micro-seepage remains an indirect case. 

 

Some additional remarks: 

• What to do in case of stacked layers where also conventional reservoirs are produced in the same area? A good 

example is the Avalon/Bonespring formations in the Permian basin. Conventional reservoirs are mostly known 
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and already produced; its projected areas on the surface (usually less than a few % of the total area) can be 

excluded from the shale grid sampling, but the different sweet spots in stacked shale layers may still overlap. 

The method in this paper can delineate the summed lateral spreading of the stacked sweet spots. Additional 

geological (drilling/seismic/other) information or interpretations is needed to determine the vertical origin of 

the hydrocarbon. 

• The quality of completions clearly has a major effect on the productivity of the well. For samples in our 

reference database, completions influence the actual production rates and thus influence the classification used 

in the training set that we correlate with. Therefore, classification of well productivity in our database is done 

on a relative base, e.g. the top 10% producing wells compared to wells in the same area / play, that are drilled 

in the same period (using comparable technology). 

 

Despite these remarks, the authors believe that the outlook of this methodology is very positive. The accuracy in 

predictability that can be reached constitutes to very significant cost savings. And with more data becoming available, 

our database increases in value as it is a learning system: every new sample point and drilled well increases the 

information content that can be used to predict new wells drilled in the future.  

 

A good example is our work with subsea samples, now available in the database, used to de-risk offshore prospects 

and wells: The same methodology is used but grid sampling is replaced by sampling cross-sections of seabed samples 

over a prospect or around a well (Figure 16). The insight used to apply this methodology is not new. The innovation 

comes from the ability to couple this with state-of-the-art technologies of recent DNA developments and the progress 

in supercomputing and machine learning for handling big data challenges.  

 

 

Figure 16: Using DNA fingerprints to de-risk offshore prospects. 
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