
Geomicrobial exploration is a novel 
technique within geochemical explora-
tion. It uses the same base principle of 
detecting a signal at the surface resulting 
from vertically moving micro-seepage 
originating from a subsurface hydro-
carbon accumulation. The technology 
to measure this signal is built on inno-
vations developed over the last decade: 
firstly, automated DNA fingerprinting 
and secondly, machine learning algo-
rithms that benefit from the exponen-
tial growth of computing power. With 
these machine learning algorithms, it 
is possible to unravel tiny differences 
within terabytes of sequence/microbial 
abundance data for samples taken above 
potential hydrocarbon accumulations. 

This makes it possible to de-risk explora-
tion considerably and lays the foundation 
for a reliable, non-intrusive, and sustain-
able technology. The methodology is a 
cross-innovation from an application in 
medical sciences where the DNA finger-
print of a cheek swab is an indicator for 
the presence of specific cancers.

Innovative Techniques for Detecting 
Micro-seepage

The causal relationship between anom-
alies and DNA fingerprints above oil 
and gas fields is micro-seepage. It con-
sists of small (colloidal size) gas bubbles 
that move upwards solely due to buoy-
ancy with a speed that is > 100m/year at 

micro-scale. The bubbles are generated 
in the transition zone of gas to water, 
when the buoyancy pressure exerted by 
the gas is greater than the capillary forces 
in the water, allowing the gas to migrate 
into the water. Due to the density and 
viscosity differences, viscous intrusion 
of petroleum gas into water will appear. 
As the hydrostatic pressure is very high, 
the tips of the intruding gas ‘fingers’ will 
snap-off and form bubbles. Since the drag 
force that opposes the upward move-
ment of the bubbles is proportional to 
the radius of the bubbles, while the buoy-
ancy force depends on the cubic radius, 
colloidal-size bubbles are created. These 
can come together later to form clusters. 
This process takes place at the reservoir/
seal interface, and in the upper part of a 
productive shale (Figure 1). 

Once the bubbles are formed, they 
move upwards to the surface due to buoy-
ancy (the pressure exerted by the water 
molecules on a bubble force it upwards). 
Because this process takes place from 
nano- to micro-scale, the micro-seepage is 
negligible in volume compared to ‘normal’ 
migration of hydrocarbons according to 
pressure differences and geology (‘Darcy 
flow’ or secondary migration). 

Because of the small volume, micro-
seepage is difficult to measure. However, 
the slight increase in hydrocarbon con-
centration will influence the ecology of 
a tiny fraction of the bacteria that live 
in the subsurface. Some of these metab-
olise the gas as a carbon source for their 
growth (e.g., methanotrophs/methano-
philes), while others find the new envi-
ronment detrimental to their growth 
(methanophobes or methanotoxic). The 
DNA fingerprinting methodology uses 
the 16S rRNA gene as a unique genetic 
indicator for a specific bacterial species. A 
schematic representation of the steps for 
DNA fingerprinting is shown in Figure 2. 
The most difficult and determining step 
for the quality is the extraction of DNA 

Figure 1: The origin of micro-seepage is the displacement of water with colloids of gas in the lower 
part of the seal.
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Figure 2: Using shallow samples, this workflow identifies the presence or absence of microbial species thriving on hydrocarbons.

Figure 3: Extensive testing of predictive capabilities with machine learning.

from the soil. Our methods for this have 
been optimised during the processing of 
nearly 10,000 samples that are currently 
available in our database.

The second innovation used is machine 
learning to find the ~100 microbial spe-
cies that indicate oil and gas presence out 
of the millions of species present in the 
DNA fingerprint of the soil sample. The 
power of machine learning lies in the pos-
sibility to effectively check all possible 
combinations to pinpoint the required 
100 species (by a ‘deep learning neural 
network’) and in maximising and exten-
sively testing the predictive capability of 
candidate models. Training and calibra-
tion are followed by validation, which is 
checking that the predictive accuracy on 
reserved data samples is correct, as shown 
in Figure 3. Only when the prediction 
accuracy is acceptable is the model used 
to predict new/blind samples, otherwise 
the predictive capability of the model is 
improved first.

In the Field, an American Case Study

In recent years, several successful proof 
of concept projects have been carried out 
which have been published in articles and 
at conferences and exhibitions. One of 
these projects was an extensive proof-of-
concept pilot carried out in the Bakken 
and Eagle Ford Shale Formations in the 
United States. To obtain an accurate pre-
diction of the customer-supplied blinded 
samples, we used the following work-
flow (Figure 4), also described in more 
detail by Te Stroet et al. (2017). Firstly, 
soil sampling was conducted 1 ft below 
the surface (half a teaspoon). Next, DNA 
analysis was undertaken resulting in DNA 
fingerprints of the microbial ecosystem 
of each sample. Then modelling and vali-
dating of the microbes that determine the 
hydrocarbon presence was undertaken 
and finally, mapping and predicting the 
prospectivity of new samples. 

The goal of this project was to inves-
tigate whether the technique can distin-

guish between high and low producers 
in the Bakken (North Dakota) and Eagle 
Ford Shale Formations (Texas). In order 
to do this, 540 samples (Figure 5) were 
taken above selected high and low-pro-
ducing wells, subdivided into three dif-
ferent sets: high and low-producing wells 
in the Bakken oil shale, high and low-pro-
ducing oil wells of the Eagle Ford, and 
high and low gas producers of the Eagle 
Ford. To obtain valid predictions, 200 
samples (70 from the Bakken, 30 from 
the Eagle Ford oil window and 100 from 
the Eagle Ford gas window) were blinded 
by the customer after sampling. From 340 
non-blinded samples the abundances of 
all microbes present per sample were ana-
lysed using machine learning. The algo-
rithms look for differences above known 
highly productive wells and wells with 
known low productivity and then uses 
these to train a predictive model. 

This was done by three modelling 
loops: 1) an inner loop of non-blinded 
samples used to correlate DNA finger-
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Figure 4: The workflow used to obtain an accurate prediction of samples which were either blinded by a customer beforehand, or when the subsurface 
potential charge is unknown.

Figure 5: Sample locations of the Eagle Ford Shale (left) and the Bakken Shale (right). Red/white dots show all drilled wells per play, blue/green dots are 
sampled wells. Inset shows how samples are taken at publicly accessible locations (roads in dark grey) above the well lateral (red lines).

prints with known well productivity, also known as the training 
set; 2) an iterative second loop of non-blinded samples not used 
for training that are predicted and cross-validated with known 
well productivity, referred to as the validation set; 3) an outer loop 
which predicts the productivity of the blinded samples by using 
the parameters of the second loop. To preserve data integrity, 
the client applied a randomisation mask to the blinded samples 
and evaluated the delivered prediction results by removing the 
randomisation mask. The resulting model achieved an accurate 
prediction of well productivity of 85% on the blinded samples. 

Following this it was necessary to evaluate whether a model 
trained in one location could be used to predict a different loca-
tion. To test this ‘exportability’, we used the combined data from 
the Bakken and Eagle Ford Formations to predict the produc-
tivity of one of the other study areas, the Vaca Muerta Basin in 
Argentina. The result was that the USA dataset (540 samples) 
predicted the Argentina blinded samples with an accuracy of 

83%, despite the study areas being several thousand kilometres 
apart and in different climatic zones. This means that the selected 
bacteria are found in both locations, and analysis of their reac-
tion to the presence or absence of microseepage can achieve 
consistently good results.

Decrease Environmental Impact, Increase Drilling Success

From this exercise we conclude that the large number of shale 
wells and the public reporting of production information in the 
USA, make it very suitable to use DNA fingerprints of shallow 
soil samples to develop a robust machine learning model which 
predicts hydrocarbon production with an accuracy of around 
85%. The potential for application of a trained machine learning 
model on geographically distant areas is demonstrated. Whilst 
having local samples and productivity data increases the accu-
racy of study results, the USA data-trained model provided pre-
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dictive accuracies above the success threshold when considering 
Argentina samples. This indicates that in addition to providing 
a development criterion complementary to other available tech-
niques for existing fields, new fields in non-contiguous areas 
can also use this innovative and non-intrusive approach for 
prospect evaluation, de-risking, and initial well selection prior 
to production data being available. In currently ongoing offshore 
work, quite different bacterial ecosystems have been found to be 
present, compared to onshore, and the next phase is to diligently 
develop and build a corresponding sample database to support 
further efforts in this area.
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